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from sequence co-evolution



• Protein interaction and sequence co-

evolution



Interacting proteins are expected to co-

evolve to ensure proper binding
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Inferring protein interaction from 

the co-evolution principle

[Goh et al 2000, Pazos and Valencia 2001]
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Simple idea but lot’s of questions… 

• How to separate co-evolution due to 

common speciation history form co-

evolution due to function?

• Is the co- evolution signal distributed 

uniformly over the sequence? Between 

binding site only? 

• Predicting Interaction specificity 
SOSC Review, November 2008 7
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Challenges 

• How to separate co-evolution due to 

common speciation history form co-

evolution due to function?

• Is the co- evolution signal distributed 

uniformly over the sequence? Between 

binding site only? 

• Predicting Interaction specificity 
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Do binding sites co-evolve more tightly? 
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Binding sites are important but not the 

only contributor of the co- evolutionary 

signal  
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Predicting interacting domains

Jothi et. al. JMB 2007

Given interacting multi-domain proteins 

domains that  are in contact
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0.63 0.83 0.79

0.59 0.91 0.89

In 64% cases, the domain pair with 

highest correlation was interacting 

(55% expected by chance)

RESULTS: 
Jothi et. al. JMB 2007
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Predicting interacting domains

Jothi et. al. JMB 2007

Given protein-protein interaction network 

domains that  are in contact

Guimaraes et. al. Genome Biology 2008

Given interacting multi-domain proteins 

domains that  are in contact



BSOSC Review, November 2008 15

• Protein interaction and sequence co-

evolution

• Predicting domain interaction from 

protein interaction networks 
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Parsimony approach

Assumption: Protein interactions are 

mediated by domain interactions

Hypothesis: Interactions evolved in 

most parsimonious way

Method: Find the smallest set of 

domain pairs whose interaction 

would explain all protein 

interactions in the network

Guimaraes et. al. Genome Biology 2008
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Additional problems to solve:

Constraints: one per protein interaction Pm Pn

Linear programming formulation

For each domain pair Di Dj: variable xij taking value 0 or 1xij

• Model the noise in the network

• Estimate p-values 

Pm

Pn

Objective function
(representing parsimony assumption):

Interacting domains pairs  – domains pairs with Xij=1

Guimaraes et. al. Genome Biology 2008
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Results compared to previous methods: Identifying 

interacting domain pair in interacting protein pair



BSOSC Review, November 2008 19

• Protein interaction and sequence co-

evolution

• Predicting domain interaction from 

protein interaction networks 

• Combining genetic sequence variation,  

genome wide expression profile and 

protein interaction to infer pathways 

dysregulated in complex diseases



Genetic variations in individuals affects gene 

expression level 
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Bringing PPI network and other high throughput 

networks 
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Associations of genes expressed differently 

in disease /control groups are primary target  
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Uncovering causal genes and dys-regulated 

pathways
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Compute 

conservation profile

Use conserved positions only

Additional correction using previously mentioned methods

Evolutionarily  conserved regions help separate functional 

co-evolution from co-evolution due common speciation 

history
Low entropy (evolutionarily conserved)

Kann et. al. Proteins 2007


